PTIME Computation of Transitive Closures of Octagonal Relations

نویسنده

  • Filip Konecný
چکیده

Computing transitive closures of integer relations is the key to finding precise invariants of integer programs. In this paper, we study difference bounds and octagonal relations and prove that their transitive closure is a PTIMEcomputable formula in the existential fragment of Presburger arithmetic. This result marks a significant complexity improvement, as the known algorithms have EXPTIME worst case complexity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterating Octagons

In this paper we prove that the transitive closure of a nondeterministic octagonal relation using integer counters can be expressed in Presburger arithmetic. The direct consequence of this fact is that the reachability problem is decidable for flat counter automata with octagonal transition relations. This result improves the previous results of Comon and Jurski [7] and Bozga, Iosif and Lakhnec...

متن کامل

Fast Acceleration of Ultimately Periodic Relations

Computing transitive closures of integer relations is the key to finding precise invariants of integer programs. In this paper, we describe an efficient algorithm for computing the transitive closures of difference bounds, octagonal and finite monoid affine relations. On the theoretical side, this framework provides a common solution to the acceleration problem, for all these three classes of r...

متن کامل

A Parallel and Distributed Approach for Finding Transitive Closures of Data Records: A Proposal

In this paper, we propose an approach to find transitive closures on large data sets in distributed (i.e., parallel) environment. Finding transitive closures of data records is a preprocessing step of a two-step approach to data quality control, such as data accuracy, redundancy, consistency, currency and completeness. The objective of finding transitive closures is to reduce the number of reco...

متن کامل

Characterizations of egalitarian binary relations as transitive closures with a special reference to Lorenz dominance and to single-crossing conditions

Characterizations of Egalitarian Characterizations of Egalitarian Characterizations of Egalitarian Characterizations of Egalitarian Binary Relations as Transitive Closures Binary Relations as Transitive Closures Binary Relations as Transitive Closures Binary Relations as Transitive Closures-with a special reference to Lo with a special reference to Lo with a special reference to Lo with a speci...

متن کامل

Estimating the Size of Generalized Transitive Closures

We present a framework for the estimation of the size of binary recursively defined relations. We show how the framework can be used to provide estimating algo rithms for the size of the transitive closure and generalizations of the transitive closure, and also show that for bounded degree relations, the algorithm runs in linear time. Such estimating algorithms are essential if database systems...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016